Dynamic Light Scattering of Diabetic Vitreopathy

J. SEBAG, M.D., FACS, FRCOphth,¹,² RAFAT R. ANSARI, Ph.D.,³ STEPHAN DUNKER, M.D.,¹ and KWANG I. SUH, Ph.D.³

ABSTRACT

Background: Diabetes induces pathology throughout the body via nonenzymatic glycation of proteins. Vitreous, which is replete with type II collagen, undergoes significant changes in diabetes. The resultant diabetic vitreopathy plays an important role in diabetic retinopathy. Detecting these molecular changes could provide insight into diabetic retinopathy. DLS measurements found a greater heterogeneity and larger particle sizes in vitreous of subjects with diabetes as compared to age-matched controls.

Conclusions: DLS can detect and quantify the early molecular effects that cause vitreous collagen fibrils to cross-link and aggregate. This could provide valuable insight into the systemic effects of hyperglycemia, because the molecular changes in diabetic vitreopathy could serve as an index of such effects throughout the body. In addition to the diagnostic implications, this methodology could provide a rapid, reproducible way to monitor therapeutic response to therapy with novel agents intended to prevent the complications of diabetes on a molecular level.

INTRODUCTION

THE EFFECTS OF DIABETES ON THE RETINA, called diabetic retinopathy, result in the leading cause of blindness in Americans between 20 and 74 years of age.¹ Diabetic retinopathy is characterized by pathological changes in the retinal vasculature that interfere with normal function of the retinal cells. Although considerable progress has been made in our understanding of the mechanisms by which hyperglycemia alters the retina, there has been little progress in our ability to diagnose this condition during early stages.
fact, there is a prevailing concept that until the retina has microhemorrhages, microaneurysms, and other ophthalmoscopically visible manifestations of diabetes effects, patients with diabetes do not have diabetic retinopathy. It must be appreciated, however, that once these abnormalities are present in the retina, the disease has attained a level of histopathology. This stage is preceded by a variably protracted period of physiopathology that we are currently unable to adequately evaluate in a clinical setting. This limitation greatly hampers attempts to develop new ways to prevent vision loss from advancing diabetic retinopathy. Thus, future progress depends on new approaches and methodologies that can detect changes induced by diabetes during the early period of physiopathology, prior to the onset of histopathology.

Although vitreous is the largest structure within the eye, comprising some 80% of ocular volume, our knowledge of its structure is perhaps the least of all ocular tissues. Historically, investigations of vitreous structure have been hampered by the fundamental difficulty that any attempts to define vitreous morphology are in point of fact attempts to “visualize” a tissue that is invisible by design (Fig. 1). Composed primarily (98%) of water, vitreous is a viscoelastic gel as a result of its major structural components: collagen (primarily type II, but also type IX and a hybrid of types V and XI) and the glycosaminoglycans hyaluronan (HA). An understanding of the pathological changes in vitreous structure and function induced by any disease requires information about the molecular effects of the disease on these two critical molecules. For example, consider that in aging, there is dissociation of collagen from the previously intercalated HA molecules and resultant cross-linking of collagen fibrils into larger and larger bundles of collagen fibrils that ultimately attain visible proportions as fibers (Fig. 2). These events likely play an important role in age-related vitreous degeneration (ARVD), which contributes to posterior vitreous detachment (PVD). Anomalous PVD is an important cause of retinal tears and detachments in many patients. Investigations are currently underway to elucidate the nature of normal vitreous collagen and HA interaction and determine how this changes with aging. In time, a better understanding of this phenomenon will result, enabling the development of methods by which to therapeutically or preventative intervention.

Elevated levels of glucose affect tissues throughout the body by altering protein structure and function through the phenomenon of nonenzymatic glycation. One of the most ubiquitous and important proteins altered by this process is collagen. Hyperglycemic effects on collagen underlie the basement membrane pathology in blood vessels throughout the body, including the retina. At present there are no methods by which to evaluate glycation effects on collagen in the retinal vasculature. An alternative approach that could provide insight into this process would be to evaluate glycation effects upon collagen in another ocular tissue, e.g., vitreous. In recent years, vitreous has come to be recognized as an important contributor to advanced diabetic retinopathy. In fact, one investigator has proposed the use of
Dynamic Light Scattering (DLS)

DLS is a well-known laboratory technique that is frequently used to measure average size or size distribution of microscopic particles (3 nm–3 μm in diameter) suspended in a fluid medium. New-generation DLS instrumentation, developed at NASA to conduct fluid physics experiments on-board the space shuttle and space station orbiters, is used in this study. These have been extensively described elsewhere and therefore the methodology will only be summarized. The input beam from a semiconductor laser (670-nm wavelength) at 50 μW power was projected into the eye and the scattered signal was collected by the DLS probe for a duration of 10 seconds. The signal was then detected by an avalanche photodiode detector system (EG&G Canada, Model PCS2). A time correlation function (TCF; see Fig. 4) was constructed using a digital correlator card (Brookhaven Instrument, BI9000). The slope of the TCF provides a measure of particle size in the vitreous.

FIG. 4. Dynamic Light Scattering of Vitreous. The correlation function in this graph demonstrates the two components that make up the DLS curve. In vitreous, the "slow" component (open triangles) primarily arises from collagen. Tangent lines determined by an algorithm that fits the curve using a double exponential model indicate the different values corresponding to the fast (left end of the abscissa) and slow (right end of abscissa) components of the DLS curve. The data can be used to determine the distribution of particle sizes, represented as the bar graph in the inset to the upper right, where the left bar is collagen and the bar to the right is the particle size distribution determined from the "fast" component of the time relaxation curve, arising primarily from hyaluronan.
Vitreous specimens

Specimens for DLS consisted of 2 pairs of human eyes obtained at autopsy and studies were performed within 36 hours of death. One donor was a 70-year-old woman with no diabetes while the other was a 72-year-old woman with type 2 diabetes of unknown duration. At room temperature, the sclera, choroid, and retina were dissected off the vitreous in 2 different manners. For DLS measurements across the anterior vitreous, a "window" approximately 3 x 3 mm in size was dissected at the level of the equator. This enabled the DLS laser to scan across the anterior and central vitreous. In preparations for axial DLS measurements the cornea, iris, and lens were removed, leaving the posterior lens capsule intact.

Experimental setup

In eyes prepared by dissecting an equatorial window, DLS measurements were made at multiple points 0.5 mm apart, spanning the equatorial vitreous from one side to the other. DLS measurements along the optical (antero-posterior) axis were similarly made at 0.5-mm intervals, beginning at the posterior lens capsule back to the posterior vitreous cortex. The vitreous was scanned using a DLS probe in conjunction with a micropositioning assembly as shown in Figure 5. The translation stages (Newport, model 423) with motorized actuators (Newport, model 850B) control motion in the X, Y, and Z directions. A motion controller (Newport, model MM1000DC) receives a series of commands from the Pentium processor based computer/correlator (EPS, 7600 series) via RS232 cable and drives the actuators for precise positioning of the probe. The correlator software (Brookhaven Instrument, BI9000) is modified to achieve online control of the probe position without leaving the program environment.

DLS measurements of artificial vitreous solutions at room temperature (not presented) showed no deterioration in the results over a 24-hour period of time.

FIG. 5. Experimental Setup for DLS of Human Vitreous. Vitreous was scanned using a DLS probe in conjunction with a micropositioning assembly as described in the methodology. The slope of the TCF provides a measure of particle size in the vitreous.
Dark-field slit microscopy

The dissection of the sclera, choroid, and retina off the entire vitreous that is left attached to the anterior segment and illuminated from the side with a slit-lamp beam creates a horizontal optical section through the vitreous. This has been previously described extensively.3,6,10

RESULTS

DLS measurements of particle size distribution demonstrated that there are 2 groups of molecular species in vitreous, one underlying the "fast" component of the correlation function and the other accounting for the "slow" component (Fig. 4). The slow component in the DLS measurements from specimens of nondiabetic subjects with equatorial windows showed a fairly consistent particle size determination across the anterior vitreous (Fig. 5). However, in vitreous from patients with diabetes, there was a different pattern of DLS results. The central vitreous had evidence of heterogeneity in particle sizes with generally larger particle sizes within the vitreous from diabetic subjects as compared to nondiabetic controls (Fig. 5). DLS measurements along the optical (anteroposterior) axis similarly showed larger particle sizes in the vitreous from diabetic subjects as compared to age-matched controls.

\begin{center}
\includegraphics[width=\textwidth]{fig6.png}
\end{center}

Fig. 6. Dynamic Light Scattering (DLS) of Vitreous in Diabetes. The abscissa represents the distance from the equatorial surface into the vitreous at which the DLS measurements were made, in steps that were 0.5 mm apart. The ordinate indicates the average particle size calculated from the "slow component" of the time relaxation curves (see fig. 4) DLS measurements. In the 72-year-old patient with diabetes (closed circles) there were larger and more varied particle sizes than in the 70-year-old non-diabetic (open triangles).
DISCUSSION

It is reasonable to assume that HA is the major contributor to the fast component and vitreous collagen is the predominant molecule influencing the slow component of the DLS curve. There is considerable optical anisotropy in the slow component data that is increased in specimens from diabetic subjects. Those findings are likely the result of glycation effects on collagen with cross-linking and aggregation of adjacent collagen fibrils into larger bundles of parallel fibers. This optical anisotropy in diabetic vitreous is the fundamental abnormality that underlies diabetic vitreopathy. It results from glycation of vitreous collagen and resultant cross-linking of collagen molecules into bundles of parallel collagen fibrils. The glycation and even the cross-linking could result not only from diabetes effects on type II collagen, the predominant forms in vitreous, but also from effects on type IX and the hybrid type V/XI. As the latter comprises the central core of a vitreous collagen fibril, the type II collagen coating this core and especially the type IX collagen on the surface of the fibril would seem to be particularly important targets for glycation and participants in the process of cross-linking between adjacent collagen fibrils. This not only causes structural changes within vitreous col-

\[\text{\triangle Normal} \quad \circ \text{Diabetic}\]

FIG. 7. The fellow eyes of the subjects described in figure 6 were prepared by removing the cornea, iris, and lens from the globe, leaving the posterior capsule of the lens intact. DLS measurements were made along the antero-posterior axis at steps 0.5 mm apart, beginning behind the posterior capsule of the lens. The abscissa represents the distance from the lens capsule. The ordinate shows the particle sizes determined from the "slow component" of the time relaxation curves (see fig. 4). In the 72-year-old patient with diabetes (closed circles) there were larger and more varied particle sizes than in the 70-year-old non-diabetic (open triangles).
lagen fibrils, but also functional abnormalities that play a role in progressive diabetic retinopathy and vision loss.

These preliminary investigations suggest that the noninvasive method of DLS using the probe developed by Ansari at NASA can detect the molecular effects of diabetes and hyperglycemia on extracellular matrix components such as collagen. Ubiquitous throughout the body, collagen is an important target of diabetes. The alteration of collagen and other such molecules eventually leads to the histopathology observed in later stages of disease, changes that in the retina are recognized as the classic hallmarks of diabetic retinopathy. Previous studies have indeed found a correlation between vitreous particle sizes and stages of diabetic retinopathy. With the DLS probe used in the study presented herein, however, it appears possible to detect molecular changes in vitreous that may precede changes in the retina, and perhaps other parts of the body.

The ability to identify this phenomenon at such an early stage enables the study of molecular mechanisms of disease. To detect such changes earlier than at the stage of histopathology affords an opportunity to develop methods with which to intervene prior to the development of irreversible changes, thereby preventing pathology. The noninvasive nature of this methodology further offers the possibility to perform repeat measurements and provide a gauge of the response to therapy.

ACKNOWLEDGMENT

Supported by NASA/NIH agreement research grant 1997–1998.

REFERENCES

Address reprint requests to:
18821 Delaware Street #202
Huntington Beach, CA 92648

E-mail: jsebag@pol.net